A Generative Drug–Drug Interaction Triplets Extraction Framework Based on Large Language Models

Author:

Hu Haotian1,Yang Alex Jie1,Deng Sanhong1,Wang Dongbo2,Song Min3,Shen Si4

Affiliation:

1. Nanjing University China

2. Nanjing Agricultural University China

3. Yonsei University Republic of Korea

4. Nanjing University of Science and Technology China

Abstract

ABSTRACTDrug–Drug Interaction (DDI) may affect the activity and efficacy of drugs, potentially leading to diminished therapeutic effect or even serious side effects. Therefore, automatic recognition of drug entities and relations involved in DDI is of great significance for pharmaceutical and medical care. In this paper, we propose a generative DDI triplets extraction framework based on Large Language Models (LLMs). We comprehensively apply various training methods, such as In‐context learning, Instruction‐tuning, and Task‐tuning, to investigate the biomedical information extraction capabilities of GPT‐3, OPT, and LLaMA. We also introduce Low‐Rank Adaptation (LoRA) technology to significantly reduce trainable parameters. The proposed method achieves satisfactory results in DDI triplet extraction, and demonstrates strong generalization ability on similar corpus.

Publisher

Wiley

Subject

Library and Information Sciences,General Computer Science

Reference12 articles.

1. Integrating heterogeneous knowledge graphs into drug–drug interaction extraction from the literature

2. Language models are few‐shot learners;Brown T.;Advances in Neural Information Processing Systems,2020

3. The DDI corpus: An annotated corpus with pharmacological substances and drug–drug interactions

4. Hu E. J. Shen Y. Wallis P. Allen‐Zhu Z. Li Y. Wang S. …Chen W.(2021).Lora: Low‐rank adaptation of large language models.arXiv preprint arXiv:2106.09685.

5. Joint learning-based causal relation extraction from biomedical literature

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3