Integrating heterogeneous knowledge graphs into drug–drug interaction extraction from the literature

Author:

Asada Masaki1ORCID,Miwa Makoto1ORCID,Sasaki Yutaka1ORCID

Affiliation:

1. Toyota Technological Institute , 2-12-1 Hisakata, Tempaku-ku, Nagoya, Aichi 468-8511, Japan

Abstract

Abstract Motivation Most of the conventional deep neural network-based methods for drug–drug interaction (DDI) extraction consider only context information around drug mentions in the text. However, human experts use heterogeneous background knowledge about drugs to comprehend pharmaceutical papers and extract relationships between drugs. Therefore, we propose a novel method that simultaneously considers various heterogeneous information for DDI extraction from the literature. Results We first construct drug representations by conducting the link prediction task on a heterogeneous pharmaceutical knowledge graph (KG) dataset. We then effectively combine the text information of input sentences in the corpus and the information on drugs in the heterogeneous KG (HKG) dataset. Finally, we evaluate our DDI extraction method on the DDIExtraction-2013 shared task dataset. In the experiment, integrating heterogeneous drug information significantly improves the DDI extraction performance, and we achieved an F-score of 85.40%, which results in state-of-the-art performance. We evaluated our method on the DrugProt dataset and improved the performance significantly, achieving an F-score of 77.9%. Further analysis showed that each type of node in the HKG contributes to the performance improvement of DDI extraction, indicating the importance of considering multiple pieces of information. Availability and implementation Our code is available at https://github.com/tticoin/HKG-DDIE.git

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference36 articles.

1. Using drug descriptions and molecular structures for drug–drug interaction extraction from literature;Asada;Bioinformatics,2021

2. Representing a heterogeneous pharmaceutical knowledge-graph with textual information;Asada;Front. Res. Metr. Anal,2021

3. Translating embeddings for modeling multi-relational data;Bordes,2013

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3