Hybrid Plasmonic Modes for Enhanced Refractive Index Sensing

Author:

Dana Bereket Dalga12ORCID,Boyu Ji1ORCID,Lin Jingquan13ORCID,Li Longnan4ORCID,Koya Alemayehu Nana4ORCID,Li Wei4ORCID

Affiliation:

1. School of Physics Changchun University of Science and Technology Changchun 130022 China

2. Department of Physics College of Natural and Computational Sciences Jinka University P. O. Box 165 Jinka Ethiopia

3. Zhongshan Institute of Changchun University of Science and Technology Zhongshan 528400 China

4. GPL Photonics Laboratory State Key Laboratory of Luminescence and Applications Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 China

Abstract

AbstractCompared to single nanoparticles, strongly coupled plasmonic nanoparticles provide attractive advantages owing to their ability to exhibit multiple resonances with unique spectral features and higher local field intensity. These enhanced plasmonic properties of coupled metal nanoparticles have been used for various applications including realization of strong light‐matter interaction, photocatalysis, and sensing. In this article, the basic physics of hybrid plasmonic modes in coupled metallic nanodimers is reviewed and their potentials for refractive index sensing are assessed. In particular, the spectral line shapes of various modes of hybrid plasmons including bonding and antibonding modes in symmetric nanodimers, Fano resonances in asymmetric nanodimers, charge transfer plasmons in linked nanoparticle dimers, hybrid plasmon modes in nanoshells, gap modes in particle‐on‐mirror configurations, and hybrid magnetoplasmonic modes in heterodimers are overviewed. Beyond the dimeric nanosystems, the potentials of surface lattice resonances in periodic nanoparticle arrays for sensing applications are also showcased. Finally, based on the critical assessment of the recent research on coupled plasmonic modes, the outlook on the future prospects of hybrid plasmon‐based refractometric sensing are discussed. Given their tunable resonances and ultranarrow spectral features, coupled metal nanoparticles are expected to play key roles in developing precise plasmonic nanodevices with extreme sensitivity.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3