Affiliation:
1. College of Agronomy and Biotechnology Yunnan Agricultural University Kunming China
2. Medicinal Plants Research Institute Yunnan Academy of Agricultural Sciences Kunming China
3. Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology Zhaotong University Zhaotong China
Abstract
AbstractTo identify wild and cultivated Gastrodia elata quickly and accurately, this study is the first to apply three‐dimensional correlation spectroscopy (3DCOS) images combined with deep learning models to the identification of G. elata. The spectral data used for model building do not require any preprocessing, and the spectral data are converted into three‐dimensional spectral images for model building. For large sample studies, the time cost is minimized. In addition, a partial least squares discriminant analysis (PLS‐DA) model and a support vector machine (SVM) model are built for comparison with the deep learning model. The overall effect of the deep learning model is significantly better than that of the traditional chemometric models. The results show that the model achieves 100% accuracy in the training set, test set, and external validation set of the model built after 46 iterations without preprocessing the original spectral data. The sensitivity, specificity, and the effectiveness of the model are all 1. The results concluded that the deep learning model is more effective than the traditional chemometric model and has greater potential for application in the identification of wild and cultivated G. elata.
Funder
National Natural Science Foundation of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献