Precisely Engineering Asymmetric Atomic CoN4 by Electron Donating and Extracting for Oxygen Reduction Reaction

Author:

Lv Minghui1,Cui Cheng‐Xing2,Huang Niu1,Wu Mingzhu1,Wang Qiao1,Gao Tao1,Zheng Yong1,Li Hui3,Liu Wei1,Huang Yingping1,Ma Tianyi3ORCID,Ye Liqun1ORCID

Affiliation:

1. College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China

2. School of Chemistry and Chemical Engineering, Institute of Computational Chemistry Henan Institute of Science and Technology Xinxiang 453003 China

3. School of Science RMIT University Melbourne VIC 3000 Australia

Abstract

AbstractThe development of nonpyrolytic catalysts featuring precisely defined active sites represents an effective strategy for investigating the fundamental relationship between the catalytic activity of oxygen reduction reaction (ORR) catalysts and their local coordination environments. In this study, we have synthesized a series of model electrocatalysts with well‐defined CoN4 centers and nonplanar symmetric coordination structures. These catalysts were prepared by a sequential process involving the chelation of cobalt salts and 1,10‐phenanthroline‐based ligands with various substituent groups (phen(X), where X=OH, CH3, H, Br, Cl) onto covalent triazine frameworks (CTFs). By modulating the electron‐donating or electron‐withdrawing properties of the substituent groups on the phen‐based ligands, the electron density surrounding the CoN4 centers was effectively controlled. Our results demonstrated a direct correlation between the catalytic activity of the CoN4 centers and the electron‐donating ability of the substituent group on the phenanthroline ligands. Notably, the catalyst denoted as BCTF−Co‐phen(OH), featuring the electron‐donating OH group, exhibited the highest ORR catalytic activity. This custom‐crafted catalyst achieved a remarkable half‐wave potential of up to 0.80 V vs. RHE and an impressive turnover frequency (TOF) value of 47.4×10−3 Hz at 0.80 V vs. RHE in an alkaline environment.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3