Affiliation:
1. Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
2. Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
Abstract
AbstractTo conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal‐air batteries, catalysts with dual‐active centers have stood out. Here, a “pre‐division metal clusters” strategy is firstly conceived to fabricate a N,S‐dual doped honeycomb‐like carbon matrix inlaid with CoN4 sites and wrapped Co2P nanoclusters as dual‐active centers (Co2P/CoN4@NSC‐500). A crystalline {CoII2} coordination cluster divided by periphery second organic layers is well‐designed to realize delocalized dispersion before calcination. The optimal Co2P/CoN4@NSC‐500 executes excellent 4e− ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn‐air battery (ZAB) assembled by Co2P/CoN4@NSC‐500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm−2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献