High‐dose synthetic phenolic antioxidant propyl gallate impairs mouse oocyte meiotic maturation through inducing mitochondrial dysfunction and DNA damage

Author:

Yang Sheng‐Ji1,Wang Yong‐Sheng1,Zhang Li‐Dan1,Ding Zhi‐Ming1,Zhou Xu1,Duan Ze‐Qun1,Liu Ming1,Liang Ai‐Xin12,Huo Li‐Jun12ORCID

Affiliation:

1. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology Huazhong Agricultural University Wuhan People's Republic of China

2. National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR) Huazhong Agricultural University Wuhan People's Republic of China

Abstract

AbstractPropyl gallate (PG) is one of the most widely used antioxidants in food products, cosmetics and pharmaceutical industries. Increased research has suggested that exposure to PG influences reproductive health in humans and animals. However, until now, it has not yet been confirmed whether PG would impact oocyte quality. In this study, the hazardous effects of PG on oocyte meiotic maturation were investigated in mice. The findings showed that PG exposure compromises oocyte meiosis by inducing mitochondrial stress which activates apoptosis to trigger oocyte demise. Moreover, DNA damage was significantly induced in PG‐treated oocytes, which might be another cause of oocyte developmental arrest and degeneration. Besides, the level of histone methylation (H3K27me2 and H3K27me3) in oocyte was also significantly increased by PG exposure. Furthermore, PG‐induced oxidative stress was validated by the increased level of reactive oxygen species (ROS), which might be the underlying reason for these abnormities. In conclusion, the foregoing findings suggested that PG exposure impaired oocyte meiotic maturation by yielding mitochondrial stress to activate apoptosis, inducing DNA damage and oxidative stress, and altering histone methylation level.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3