Matrix Diffractive Deep Neural Networks Merging Polarization into Meta‐Devices

Author:

Wang Yuzhong1,Yu Axiang1,Cheng Yayun1,Qi Jiaran1ORCID

Affiliation:

1. Department of Microwave Engineering School of Electronics and Information Engineering Harbin Institute of Technology Harbin 150001 China

Abstract

AbstractThe all‐optical diffractive deep neural networks (D2NNs) framework as a hardware platform is demonstrated to implement various advanced functional meta‐devices with high parallelism and high processing speed. However, the design methodology merging trainable polarization modulation neurons into the D2NNs, which potentially possess higher integration and more task‐loading capacity, is not yet fully explored. Here, the matrix diffractive deep neural networks (M‐D2NNs) are proposed to deploy polarization‐sensitive Jones matrix metasurfaces into the all‐optical polarization multiplexing networks to perform sophisticated inference tasks as well as inverse designs for advanced functional meta‐devices. Three polarization multiplexing meta‐devices with advanced functionalities are implemented by the M‐D2NNs, that is, high task‐capacity integration classification, non‐interleaved high‐efficiency Jones matrix eight‐channel regulation, and custom‐polarization information cryptographic multiplexing. The M‐D2NNs are demonstrated to provide a new strategy to merge polarization into electromagnetic and optical field modulators by Jones matrix metasurfaces, which may drive the evolution of all‐optical networks toward multi‐task integration and more advanced functional devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3