Highly-efficient full-color holographic movie based on silicon nitride metasurface

Author:

Yamaguchi Masakazu1,Saito Hiroki2,Ikezawa Satoshi3ORCID,Iwami Kentaro12ORCID

Affiliation:

1. Department of Bio-Functions and Systems Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184–8588 Japan

2. Department of Mechanical Systems Engineering , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184–8588 Japan

3. Waseda Research Institute for Science and Engineering, Waseda University , Shinjuku , Tokyo 169–8555 Japan

Abstract

Abstract Metasurface holograms offer various advantages, including wide viewing angle, small volume, and high resolution. However, full-color animation of high-resolution images has been a challenging issue. In this study, a full-color dielectric metasurface holographic movie with a resolution of 2322 × 2322 was achieved by spatiotemporally multiplexing 30 frames with blue, green, and red color channels at the wavelengths of 445 nm, 532 nm, and 633 nm at the maximum reconstruction speed of 55.9 frames per second. The high average transmittance and diffraction efficiency of 92.0 % and 72.7 %, respectively, in the visible range, were achieved by adopting polarization-independent silicon nitride waveguide meta-atoms, resulting in high color reproducibility. The superposition of three wavelengths was achieved by adjusting the resolutions and positions of target images for each wavelength while maintaining the meta-atom pitch constant. The improvement in diffraction efficiency was brought about by the optimization of etching conditions to form high-aspect vertical nanopillar structures.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3