Sonodynamic Therapy‐Driven Immunotherapy: Constructing AIE Organic Sonosensitizers Using an Advanced Receptor‐Regulated Strategy

Author:

Tian Mengyan1,Li Yucong2,Li Yaning1,Yang Tianyue1,Chen Hongli3,Guo Jun2,Liu Yi45,Liu Pai1ORCID

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China

2. State Key Laboratory of Separation Membranes and Membrane Processes School of Chemical Engineering and Technology Tiangong University Tianjin 300387 P. R. China

3. State Key Laboratory of Separation Membranes and Membrane Processes School of Life Sciences Tiangong University Tianjin 300387 P. R. China

4. State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry Tiangong University Tianjin 300387 P. R. China

5. School of Chemical and Environmental Engineering Wuhan Polytechnic University Wuhan 430023 P. R. China

Abstract

AbstractBenefit from the deeper penetration of mechanical wave, ultrasound (US)‐based sonodynamic therapy (SDT) executes gratifying efficacy in treating deep‐seated tumors. Nevertheless, the complicated mechanism of SDT undeniably hinders the exploration of ingenious sonosensitizers. Herein, a receptor engineering strategy of aggregation‐induced emission (AIE) sonosensitizers (TPA‐Tpy) with acceptor (A)‐donor (D)‐A’ structure is proposed, which inspects the effect of increased cationizations on US sensitivity. Under US stimulation, enhanced cationization in TPA‐Tpy improves intramolecular charge transfer (ICT) and accelerates charge separation, which possesses a non‐negligible promotion in type I reactive oxygen species (ROS) production. Moreover, abundant ROS‐mediated mitochondrial oxidative stress triggers satisfactory immunogenic cell death (ICD), which further promotes the combination of SDT and ICD. Subsequently, subacid pH‐activated nanoparticles (TPA‐Tpy NPs) are constructed with charge‐converting layer (2,3‐dimethylmaleic anhydride‐poly (allylamine hydrochloride)‐polyethylene glycol (DMMA‐PAH‐PEG)) and TPA‐Tpy, achieving the controllable release of sonosensitizers. In vivo, TPA‐Tpy‐mediated SDT effectively initiates the surface‐exposed of calreticulin (ecto‐CRT), dendritic cells (DCs) maturation, and CD8+ T cell infiltration rate through enhanced ROS production, achieving suppression and ablation of primary and metastatic tumors. This study provides new opinions in regulating acceptors with eminent US sensitization, and brings a novel ICD sono‐inducer based on SDT to realize superior antitumor effect.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3