Affiliation:
1. State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
2. School of Chemistry Xiangtan University Xiangtan 411105 China
3. Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan 411201 China
Abstract
AbstractTe‐based materials with excellent electrical conductivity and ultra‐high volume specific capacity have attracted much attention for the cost‐efficient aqueous Zn batteries. However, the construction of functional structures with mild volume expansion and suppressed shuttle effects, enabling an expanded lifespan, is still a challenge for conversion‐type materials. Herein, the carbon‐coated zinc telluride nanowires (ZnTe@C NWs) are rationally designed as a high‐performance cathode material for aqueous Zn batteries. The carbon‐coated1D nanostructure could not only provide optimized transmission path for electrons and ions, but also help to maintain structure integrity upon volume variation and suppress intermediates dissolution, endowing the ZnTe@C NWs with improved cycling stability and reaction kinetics. Consequently, a reversible six‐electron reaction mechanism of ZnTe@C NWs based on Te2−/Te4+ conversion with excellent output capacity (586 mAh g−1 at 0.1 A g−1) and lifespan (>250 mAh g−1 retained for 400 cycles at 1 A g−1) is eventually achieved.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献