Affiliation:
1. The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
2. Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 P. R. China
3. Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710004 P. R. China
Abstract
AbstractMechanically sensitive tissues (e.g., skeletal muscles) greatly need mechanical stimuli during the development and maturation. The extracellular matrix (ECM) mediates these signals through nonlinear viscoelasticity of collagen networks that are predominant components of the ECM. However, the interactions between cells and ECM form a feedback loop, and it has not yet been possible to determine the degree to which, if any, of the features of matrix nonlinear viscoelasticity affect skeletal muscle development and regeneration. In this study, a nonlinear viscoelastic feature (i.e., strain‐enhanced stress relaxation (SESR)) in normal skeletal muscles is observed, which however is almost absent in diseased muscles from Duchenne muscular dystrophy mice. It is recapitulated such SESR feature in vitro and separated the effects of mechanical strain and ECM viscoelasticity on myoblast response by developing a collagen‐based hydrogel platform. Both strain and stress relaxation induce myogenic differentiation and myotube formation by C2C12 myoblasts, and myogenesis is more promoted by applying SESR. This promotion can be explained by the effects of SESR on actin polymerization‐mediated myocardin related transcription factor (MRTF) nuclear localization and nuclear mechanotransduction. This study represents the first attempt to investigate the SESR phenomenon in skeletal muscles and reveal underlying mechanobiology, which will provide new opportunities for the tissue injury treatments.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献