Effect of Hydrogel Matrix and Fluid Shear Stress on the Behavioral Regulation of Mesenchymal Stem Cells

Author:

Kang Shenghui1,Wu Xiaoyu1,Qi Hang1,Yang Kai1,Feng Ruoyu1,Guo Wenlan1,Sun Chen1,Duan Xuexin1,Wang Yanyan1ORCID

Affiliation:

1. State Key Laboratory of Precision Measurement Technology and Instruments College of Precision Instruments and Opto‐electronics Engineering Tianjin University Tianjin 300072 China

Abstract

Development of a micromodel that recapitulates multiple mechanical properties to mimic the complex mechanical microenvironment is crucial for cell‐based research. Herein, a microsystem combining structure of hydrogel matrix and acoustic streaming (AS) to mimic the cellular microenvironment is proposed, which can realize multiplex cellular mechanical cues, including matrix stiffness, fluid shear stress (FSS) generated by AS, and matrix roughness. The results demonstrate that the cell spreading area enlarges with the increase of matrix stiffness, and cell spreading is encouraged by integrin β1 cluster to polymerize actin when combines the hydrogel matrix with FSS. In addition, FSS has the influence on the roughness of the hydrogel, which further affects the cell morphology and mechanical properties, inducing mesenchymal stem cells (MSCs) differentiation into astrocytes rapidly. Meanwhile, cell migration is also enhanced by FSS stimulation, particularly, undifferentiated cells at 22 kPa hydrogel have the fastest migration speed, and change the movement model from contact inhibition to contact stimulation migration. Especially, matrix roughness and stiffness dominantly control of cell spreading and differentiation, whereas FSS affects cell migration. In conclusion, the microsystem in this work shows superior performance in regulating the spreading, differentiation, and migration of MSCs, which provides a new tool for cell‐microenvironment study.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3