Spiral‐Driven Vertical Conductivity in Nanocrystalline Graphene

Author:

Kim Yohan1,Lee Chang‐Seok2,Son Seungwoo1,Shin Keun Wook2,Byun Kyung‐Eun2,Shin Hyeon‐Jin2,Lee Zonghoon1,Shin Hyung‐Joon1ORCID

Affiliation:

1. Department of Materials Science and Engineering Ulsan National Institute of Science and Technology (UNIST) 44919 Ulsan Republic of Korea

2. Device Research Center Samsung Advanced Institute of Technology 443–801 Suwon Republic of Korea

Abstract

AbstractThe structure of graphene grown in chemical vapor deposition (CVD) is sensitive to the growth condition, particularly the substrate. The conventional growth of high‐quality graphene via the Cu‐catalyzed cracking of hydrocarbon species has been extensively studied; however, the direct growth on noncatalytic substrates, for practical applications of graphene such as current Si technologies, remains unexplored. In this study, nanocrystalline graphene (nc‐G) spirals are produced on noncatalytic substrates by inductively coupled plasma CVD. The enhanced out‐of‐plane electrical conductivity is achieved by a spiral‐driven continuous current pathway from bottom to top layer. Furthermore, some neighboring nc‐G spirals exhibit a homogeneous electrical conductance, which is not common for stacked graphene structure. Klein‐edge structure developed at the edge of nc‐Gs, which can easily form covalent bonding, is thought to be responsible for the uniform conductance of nc‐G aggregates. These results have important implications for practical applications of graphene with vertical conductivity realized through spiral structure.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3