A Laser‐Processed Carbon‐Titanium Carbide Heterostructure Electrode for High‐Frequency Micro‐Supercapacitors

Author:

Zhang Zhuo1,Wang Zhiyuan1,Wang Fangcheng1,Qin Tingting1,Zhu Haojie1,Liu Peng1,Zhao Guangyao1,Wang Xiaoshu2,Kang Feiyu1,Wang Lei2,Yang Cheng1ORCID

Affiliation:

1. Institute of Materials Research Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China

2. School of Materials and Environmental Engineering Institute of Urban Ecology and Environment Technology Shenzhen Polytechnic Shenzhen 518055 P. R. China

Abstract

AbstractMicro‐supercapacitors (MSCs) are an important energy storage component for future miniaturized electronic systems, yet their key performance indexes such as high‐frequency response, energy density, and cycle life still have a large room to be improved. Herein, a laser‐processed carbon‐titanium carbide heterostructure (LCTH) electrode is demonstrated, which can excellently address the above key challenges by employing a unique one‐step laser‐processing fabrication method. Different from the other reported electrode structures, this LCTH electrode shows a heterogeneous structure, featuring the carbon nanofoam layer which provides extremely short ion transport channels and abundant electrochemical active sites, and the underlying titanium carbide layer which can provide excellent electron conductivity and contribute to the pseudo‐capacitance. The assembled symmetric supercapacitor can stably work at the voltage window of 3.5 V at an ultra‐high frequency of approximately 1121.3 Hz, exhibiting an ultra‐high areal specific energy density of 721 µFV2 cm−2 at 120 Hz and a cycle life of 140 000 cycles with capacitance retention of 100.95%, which is superior to most reported MSCs. The as‐fabricated MSC is compatible with the contemporary embedded electronic component fabrication processes, which shows significant advantages in large‐scale fabrication and system integration, demonstrating a broad prospect for future system‐in‐package applications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shenzhen Technical Project

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3