Affiliation:
1. i3N|CENIMAT Department of Materials Science NOVA School of Science and Technology and CEMOP/UNINOVA Campus de Caparica Caparica 2829‐516 Portugal
Abstract
AbstractDirect Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost‐effective, high‐resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies. First, the main DLW parameters influencing material synthesis and transformation mechanisms are summarized, aimed at selective, tailored writing of conductive and semiconducting materials. Additive and transformative DLW processing mechanisms are discussed, to open space to explore several categories of materials directly synthesized or transformed for electronics microfabrication. These include metallic conductors, metal oxides, transition metal chalcogenides and carbides, laser‐induced graphene, and their mixtures. By accessing a wide range of material types, DLW‐based electronic applications are explored, including processing components, energy harvesting and storage, sensing, and bioelectronics. The expanded capability of lasers to participate in multiple fabrication steps at different implementation levels, from material engineering to device processing, indicates their future applicability to next‐generation electronics, where more accessible, green microfabrication approaches integrate lasers as comprehensive tools.
Funder
Federación Española de Enfermedades Raras
HORIZON EUROPE Framework Programme
Fundação para a Ciência e a Tecnologia
National Foundation for Science and Technology Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献