Ballistic‐Aggregated Carbon Nanofoam in Target‐Side of Pulsed Laser Deposition for Energy Storage Applications

Author:

Ghosh Subrata1ORCID,Righi Massimiliano1,Macrelli Andrea1ORCID,Divitini Giorgio2ORCID,Orecchia Davide1ORCID,Maffini Alessandro1ORCID,Goto Francesco3ORCID,Bussetti Gianlorenzo3ORCID,Dellasega David1ORCID,Russo Valeria1ORCID,Li Bassi Andrea1ORCID,Casari Carlo S.1ORCID

Affiliation:

1. Micro and Nanostructured Materials Laboratory – NanoLab Department of Energy Politecnico di Milano via Ponzio 34/3 20133 Milano Italy

2. Electron Spectroscopy and Nanoscopy Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy

3. Solid Liquid Interface Nano-Microscopy and Spectroscopy (SoLINano-Σ) lab Department of Physics Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy

Abstract

AbstractIn pulsed laser deposition, along the traditionally exploited deposition on the front‐side of the plasma‐plume, a coating forms on the surface of the target as well. For reproducibility, this residue is usually cleaned and discarded. Here we instead investigate the target‐side coated materials and employ them as a binder‐free supercapacitor electrode. The ballistic‐aggregated, target‐side nanofoam is compact and features a larger fraction of sp2‐carbon, higher nitrogen content with higher graphitic‐N and lower oxygen content with fewer COOH groups than that of diffusive‐aggregated conventional nanofoams. They are highly hydrogenated graphite‐like amorphous carbon and superhydrophilic. The resulting symmetric micro‐supercapacitor delivers higher volumetric capacitance of 522 mF/cm3 at 100 mV/s and 104 % retention after 10000 charge‐discharge cycles over conventional nanofoam (215 mF/cm3 and 85 % retention) with an areal capacitance of 134 μF/cm2 at 120 Hz and ultrafast frequency response. Utilizing the normally discarded target‐side material can therefore enable high performing devices while reducing waste, cost and energy input per usable product, leading towards a greater sustainability of nanomaterials synthesis and deposition techniques.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3