Affiliation:
1. International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science Ibaraki 305-0044 Japan
2. Faculty of Science Tokyo University of Science Tokyo 125-8585 Japan
Abstract
Physical reservoir computing, which is a promising method for the implementation of highly efficient artificial intelligence devices, requires a physical system with nonlinearity, fading memory, and the ability to map in high dimensions. Although it is expected that spin wave interference can perform as highly efficient reservoir computing in some micromagnetic simulations, there has been no experimental verification to date. Herein, reservoir computing is demonstrated that utilizes multidetected nonlinear spin wave interference in an yttrium‐iron‐garnet single crystal. The subject computing system achieves excellent performance when used for hand‐written digit recognition, second‐order nonlinear dynamical tasks, and nonlinear autoregressive moving average (NARMA). It is of particular note that normalized mean square errors for NARMA2 and second‐order nonlinear dynamical tasks are 1.81 × 10−2 and 8.37 × 10−5, respectively, which are the lowest figures for any experimental physical reservoir so far reported. Said high performance is achieved with higher nonlinearity and the large memory capacity of interfered spin wave multidetection.
Funder
Japan Society for the Promotion of Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献