A high-performance deep reservoir computer experimentally demonstrated with ion-gating reservoirs

Author:

Nishioka DaikiORCID,Tsuchiya TakashiORCID,Imura MasatakaORCID,Koide YasuoORCID,Higuchi TohruORCID,Terabe Kazuya

Abstract

AbstractWhile physical reservoir computing is a promising way to achieve low power consumption neuromorphic computing, its computational performance is still insufficient at a practical level. One promising approach to improving its performance is deep reservoir computing, in which the component reservoirs are multi-layered. However, all of the deep-reservoir schemes reported so far have been effective only for simulation reservoirs and limited physical reservoirs, and there have been no reports of nanodevice implementations. Here, as an ionics-based neuromorphic nanodevice implementation of deep-reservoir computing, we report a demonstration of deep physical reservoir computing with maximum of four layers using an ion gating reservoir, which is a small and high-performance physical reservoir. While the previously reported deep-reservoir scheme did not improve the performance of the ion gating reservoir, our deep-ion gating reservoir achieved a normalized mean squared error of 9.08 × 10−3 on a second-order nonlinear autoregressive moving average task, which is the best performance of any physical reservoir so far reported in this task. More importantly, the device outperformed full simulation reservoir computing. The dramatic performance improvement of the ion gating reservoir with our deep-reservoir computing architecture paves the way for high-performance, large-scale, physical neural network devices.

Funder

MEXT | Japan Science and Technology Agency

MEXT | Japan Society for the Promotion of Science

Iketani Science and Technology Foundation

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3