Demonstration of Differential Mode Ferroelectric Field‐Effect Transistor Array‐Based in‐Memory Computing Macro for Realizing Multiprecision Mixed‐Signal Artificial Intelligence Accelerator

Author:

Parmar Vivek1ORCID,Müller Franz2ORCID,Hsuen Jing-Hua3,Kingra Sandeep Kaur1ORCID,Laleni Nellie2,Raffel Yannick2ORCID,Lederer Maximilian2ORCID,Vardar Alptekin2,Seidel Konrad2,Soliman Taha4,Kirchner Tobias4,Ali Tarek5,Dünkel Stefan5,Beyer Sven5,Wu Tian-Li36ORCID,De Sourav2ORCID,Suri Manan1ORCID,Kämpfe Thomas2

Affiliation:

1. Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi 110016 India

2. Fraunhofer-Institut für Photonische Mikrosysteme IPMS Center Nanoelectronic Technologies CNT An d. Bartlake 5 Dresden 01109 Germany

3. Institute of Pioneer Semiconductor Innovation National Yang Ming Chiao Tung University No. 1001, Daxue Rd. East Dist. Hsinchu City 300093 Taiwan

4. Robert Bosch GmbH Robert-Bosch-Campus 1 Renningen 71272 Germany

5. Module One GlobalFoundries Wilschdorfer Landstraße 101 Dresden 01109 Germany

6. International College of Semiconductor Technology National Yang Ming Chiao Tung University No. 1001, Daxue Rd. East Dist. Hsinchu City 300093 Taiwan

Abstract

Harnessing multibit precision in nonvolatile memory (NVM)‐based synaptic core can accelerate multiply and accumulate (MAC) operation of deep neural network (DNN). However, NVM‐based synaptic cores suffer from the trade‐off between bit density and performance. The undesired performance degradation with scaling, limited bit precision, and asymmetry associated with weight update poses a severe bottleneck in realizing a high‐density synaptic core. Herein, 1) evaluation of novel differential mode ferroelectric field‐effect transistor (DM‐FeFET) bitcell on a crossbar array of 4 K devices; 2) validation of weighted sum operation on 28 nm DM‐FeFET crossbar array; 3) bit density of 223Mb mm−2, which is ≈2× improvement compared to conventional FeFET array; 4) 196 TOPS/W energy efficiency for VGG‐8 network; and 5) superior bit error rate (BER) resilience showing ≈94% training and 88% inference accuracy with 1% BER are demonstrated.

Funder

Electronic Components and Systems for European Leadership

Bundesministerium für Wirtschaft und Technologie

Publisher

Wiley

Subject

General Medicine

Reference32 articles.

1. Deep learning

2. Custom Hardware Architectures for Deep Learning on Portable Devices: A Review

3. B.Moons K.Goetschalckx N. V.Berckelaer M.Verhelst in2017 51st Asilomar Conf. on Signals Systems and Computers IEEE Piscataway NJ2017.

4. O.Mutlu S.Ghose J.Gómez-Luna R.Ausavarungnirun inProc. of the 56th Annual Design Automation Conf. ACM New York NY2019 p.21.

5. In-memory computing with resistive switching devices

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3