Optical Nanofiber Skins for Multifunctional Humanoid Tactility

Author:

Tang Yao12,Yu Longteng1ORCID,Pan Jing1,Yao Ni1,Geng Weidong3,Li Xiong4,Tong Limin2,Zhang Lei12ORCID,Zhang Zhengyou4,Song Aiguo5

Affiliation:

1. Research Center for Humanoid Sensing Zhejiang Lab Hangzhou 311100 China

2. State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China

3. College of Computer Science and Technology Zhejiang University Hangzhou 310027 China

4. Tencent Robotics X Lab Tencent Technology (Shenzhen) Co. Ltd. Shenzhen 518054 China

5. School of Instrument Science and Engineering Southeast University Nanjing 210096 China

Abstract

Humanoid tactility has been boosting robotic intelligence in object recognition, dexterous manipulation, and human–robot interaction. For many artificial tactile sensors, especially those based on optical principles, inflexibility, bulkiness, and monomodality limit their potential to function as humanoid skins. Herein, by embedding lab‐made optical nanofibers (ONFs) into elastomeric films, soft, flexible, thin (around 500 μm, similar to human skin), and multimodal (force and thermosensitive) robotic skins are achieved. These superior characteristics arise from the low flexural rigidity and large evanescent field of ONFs, due to their subwavelength diameters (down to 450 nm). By tuning light wavelength, ONF diameter, and skin thickness, variable sensitivities and sensing ranges for both force and temperature are reported. Depending on different sensing requirements, special modules can be further assembled on the ONF skins for various surface properties, including hardness, texture, and thermal conductivity. The ONF skins can enable a commercial robot to emulate human behaviors, including adaptive grasping of flimsy objects, contactless temperature measurement, and even the perception of leaf veins. It is anticipated that these ONF skins could offer a unique solution in multiple intelligent systems such as robotics, prosthetics, human–machine interface and wearable devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3