Affiliation:
1. Research Center for Humanoid Sensing Zhejiang Lab Hangzhou 311100 China
2. State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China
3. College of Computer Science and Technology Zhejiang University Hangzhou 310027 China
4. Tencent Robotics X Lab Tencent Technology (Shenzhen) Co. Ltd. Shenzhen 518054 China
5. School of Instrument Science and Engineering Southeast University Nanjing 210096 China
Abstract
Humanoid tactility has been boosting robotic intelligence in object recognition, dexterous manipulation, and human–robot interaction. For many artificial tactile sensors, especially those based on optical principles, inflexibility, bulkiness, and monomodality limit their potential to function as humanoid skins. Herein, by embedding lab‐made optical nanofibers (ONFs) into elastomeric films, soft, flexible, thin (around 500 μm, similar to human skin), and multimodal (force and thermosensitive) robotic skins are achieved. These superior characteristics arise from the low flexural rigidity and large evanescent field of ONFs, due to their subwavelength diameters (down to 450 nm). By tuning light wavelength, ONF diameter, and skin thickness, variable sensitivities and sensing ranges for both force and temperature are reported. Depending on different sensing requirements, special modules can be further assembled on the ONF skins for various surface properties, including hardness, texture, and thermal conductivity. The ONF skins can enable a commercial robot to emulate human behaviors, including adaptive grasping of flimsy objects, contactless temperature measurement, and even the perception of leaf veins. It is anticipated that these ONF skins could offer a unique solution in multiple intelligent systems such as robotics, prosthetics, human–machine interface and wearable devices.
Funder
National Natural Science Foundation of China
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献