1/f Noise in Synaptic Ferroelectric Tunnel Junction: Impact on Convolutional Neural Network

Author:

Shin Wonjun1,Min Kyung Kyu1,Bae Jong-Ho2,Kim Jaehyeon1,Koo Ryun-Han1,Kwon Dongseok1,Kim Jae-Joon1,Kwon Daewoong3,Lee Jong-Ho1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center Seoul National University Seoul 08826 Republic of Korea

2. School of Electrical Engineering Kookmin University Seoul 02707 Korea

3. Department of Electronic Engineering Hanyang University Seoul 04763 Republic of Korea

Abstract

In recent years, neuromorphic computing has been rapidly developed to overcome the limitations of von Neumann architecture. In this regard, the demand for high‐performance synaptic devices with high switching speeds, low power consumption, and multilevel conductance is increasing. Among the various synaptic devices, ferroelectric tunnel junctions (FTJs) are promising candidates. While previous studies have focused on improving reliability of FTJs to enhance the synaptic behavior, low‐frequency noise (LFN) of FTJs has not been characterized and its impact on the learning accuracy in neuromorphic computing remains unknown. Herein, the LFN characteristics of FTJs fabricated on n‐ and p‐type Si along with the impact of 1/f noise on the learning accuracy of convolutional neural networks (CNNs) are investigated. The results indicate that the FTJ on p‐type Si exhibits a far lower 1/f noise than that on n‐type Si. The FTJ on p‐type Si exhibits a significantly higher learning accuracy (86.26%) than that on n‐type Si (78.70%) owing to its low‐noise properties. This study provides valuable insights into the LFN characteristics of FTJs and a solution to improve the performance of synaptic devices by significantly reducing the 1/f noise.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3