Author:
Zou Xingqi,Xu Sheng,Chen Xiaoming,Yan Liang,Han Yinhe
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Mittal S. A survey of ReRAM-based architectures for processing-in-memory and neural networks. Mach Learn Knowl Extr, 2018, 1: 75–114
2. Chen L R, Li J W, Chen Y R, et al. Accelerator-friendly neural-network training: learning variations and defects in RRAM crossbar. In: Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, 2017. 19–24
3. Chen W H, Li K X, Lin W Y, et al. A 65 nm 1 Mb nonvolatile computing-in-memory ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN AI edge processors. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2018. 494–496
4. Cai F, Correll J M, Lee S H, et al. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations. Nat Electron, 2019, 2: 290–299
5. Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577: 641–646
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献