Affiliation:
1. Jiangsu Collaborative Innovation Centre for Photovoltaic Science and Engineering Changzhou University Changzhou 213164 P. R. China
2. School of Mechanical Engineering and Rail Transit Changzhou University Changzhou 213164 P. R. China
3. Yangzhou Technology Innovation Research Center for Carbon Neutrality of Yangzhou University School of Mechanical Engineering Yangzhou University Yangzhou 225127 P. R. China
4. State Key Laboratory of Tribology in Advanced Equipment Tsinghua University Beijing 100084 P. R. China
Abstract
The 3D variable–stiffness structure can realize shape programming, reconstruction, adaptation, and locking, and therefore, it has a wide design creation space. Accurate local stiffness control is of considerable significance to the design and application of 3D variable–stiffness structures although it is challenging. Herein, a 3D variable–stiffness structure realization scheme based on a patterned heating network is introduced. The laser‐engraving and 3D‐printing technologies are combined to obtain a 3D variable–stiffness structure composed of a patterned graphene‐heating network (PGHN) and polylactic acid (PLA). The proposed scheme uses PGHN to accurately control the local stiffness of 3D PLA and realize programmable design and fabrication of 3D variable–stiffness structures. The “torsional structure,” “hexagonal structure,” and “spring” cases are used to elaborate the designability, excellent deformation and reconstruction capacity, and reasonable load bearing capacity of the PGHN/PLA variable–stiffness structure. A pneumatic disc, which is used as a reference for studies on shape control of PGHN/PLA variable–stiffness structures, is designed. Also, a pneumatic robot is designed based on the local stiffness control and shape‐locking function of PGHN/PLA to achieve multimode motion control using a single air source. The PGHN/PLA variable–stiffness structure has potential applications in multimode robots, wearable devices, and deployable structures.
Funder
Natural Science Foundation of Jiangsu Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献