Research on a Variable-Stiffness Joint and Its Application in Actuators

Author:

Wang Qi1ORCID,Lu Xiaolong1,Jiang Peng1,Guo Chang1ORCID,Sun Yalin2

Affiliation:

1. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China

2. CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China

Abstract

Variable-stiffness actuators can flexibly adjust the overall or local stiffness of a structure, thus enabling reconstruction, adaptation, and locking capabilities that can meet a wide range of task requirements. However, the programmable design and manufacture of three-dimensional (3D) variable-stiffness actuators has become a challenge. In this paper, we present a method to develop the 3D structure of variable-stiffness actuators that combines variable-stiffness joints with 3D printing technology. The variable-stiffness joints were obtained by arranging steel needles wrapped with enameled copper wire inside the grooves of a polylactic acid (PLA) structure and bonding the three components with silicone glue. First, a variable-stiffness joint was used as a variable-stiffness node and subjected to 3D printing to realize multiple 3D variable-stiffness designs and manufacture a programmable structure. Then, using the repulsive force between paired magnets, we developed a driving actuator for the 3D variable-stiffness structure, enabling the expansion and deployment functions of the structure. In addition, an electromagnetically driven mechanical gripper was designed based on variable-stiffness joints to effectively decrease the driving energy in applications where objects are held for extended periods using variable-stiffness control. Our study provides practical solutions and guidance for the development of 3D variable-stiffness actuators, contributing to the achievement of more innovative and practical actuators.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3