A Sustainable Multi‐Dimensional Printable Material

Author:

Nguyen Ngoc A.1,Bowland Christopher C.1,He Lilin2,Osti Naresh C.2,Phan Minh D.2,Keum Jong K.23,Tyagi Madhusudan45,Meek Kelly M.1,Littrell Kenneth C.2,Mamontov Eugene2,Ankner John2,Naskar Amit K.1ORCID

Affiliation:

1. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

2. Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

3. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA

4. NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899 USA

5. Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA

Abstract

AbstractPolymeric materials are usually tailored for specific functionality. A single polymer exhibiting multiple simultaneous functionalities often requires intricate molecular architecture, which is difficult to manufacture at scale because of its complex synthesis routes. Herein, a facile, partly renewable composition―prepared via reactive melt processing―that induces tunable functionalities such as 3D printability, shape recovery, and self‐healing while exhibiting satisfactory mechanical properties is reported. The system with a hydrogen‐bonded 3D network consists of thermally reversible nano‐scale agglomerates of sustainable, rigid phenolic oligomers and crystallizable flexible polymer. Local molecular mobility and temperature‐dependent relaxation and recovery of the non‐equilibrium networked states enable exploiting these simultaneous functionalities. Transitions involving solidification and structure stabilization at ambient temperature spanning several hours after preheating only at 70 °C directly contrast typical thermoplastic or thermoplastic elastomer behaviors. Results from this study can inform the design of future rheology modifiers and materials for soft robotics.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3