Abstract
Bionic electronic skin (E-skin) that could convert external physical or mechanical stimuli into output signals has a wide range of applications including wearable devices, artificial prostheses, software robots, etc. Here, we present a chameleon-inspired multifunctional E-skin based on hydroxypropyl cellulose (HPC), Poly(Acrylamide-co-Acrylic acid) (PACA), and carbon nanotubes (CNTs) composited liquid-crystal hydrogel. We found that the HPC could still form cholesteric liquid-crystal photonic structures with the CNTs additive for enhancing their color saturation and PACA polymerization for locating their assembled periodic structures. As the composite hydrogel containing HPC elements and the PACA scaffold responds to different stimuli, such as temperature variations, mechanical pressure, and tension, it could correspondingly change its volume or internal nanostructure and report these as visible color switches. In addition, due to the additive of CNTs, the composite hydrogel could also output these stimuli as electrical resistance signals. Thus, the hydrogel E-skins had the ability of quantitatively feeding back external stimuli through electrical resistance as well as visually mapping the stimulating sites by color variation. This dual-signal sensing provides the ability of visible-user interaction as well as antiinterference, endowing the multifunctional E-skin with great application prospects.
Funder
National Science Fundation of China
NASF Foundation of China
NSF of Jiangsu
Publisher
Proceedings of the National Academy of Sciences
Cited by
196 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献