Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins

Author:

Zhang ZhuohaoORCID,Chen Zhuoyue,Wang Yu,Zhao YuanjinORCID

Abstract

Bionic electronic skin (E-skin) that could convert external physical or mechanical stimuli into output signals has a wide range of applications including wearable devices, artificial prostheses, software robots, etc. Here, we present a chameleon-inspired multifunctional E-skin based on hydroxypropyl cellulose (HPC), Poly(Acrylamide-co-Acrylic acid) (PACA), and carbon nanotubes (CNTs) composited liquid-crystal hydrogel. We found that the HPC could still form cholesteric liquid-crystal photonic structures with the CNTs additive for enhancing their color saturation and PACA polymerization for locating their assembled periodic structures. As the composite hydrogel containing HPC elements and the PACA scaffold responds to different stimuli, such as temperature variations, mechanical pressure, and tension, it could correspondingly change its volume or internal nanostructure and report these as visible color switches. In addition, due to the additive of CNTs, the composite hydrogel could also output these stimuli as electrical resistance signals. Thus, the hydrogel E-skins had the ability of quantitatively feeding back external stimuli through electrical resistance as well as visually mapping the stimulating sites by color variation. This dual-signal sensing provides the ability of visible-user interaction as well as antiinterference, endowing the multifunctional E-skin with great application prospects.

Funder

National Science Fundation of China

NASF Foundation of China

NSF of Jiangsu

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference46 articles.

1. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics;Yang;Adv. Mater.,2019

2. Second skin enabled by advanced electronics;Oh;Adv. Sci. (Weinh.),2019

3. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow;Boutry;Nat. Biomed. Eng.,2019

4. Nanomaterials in skin-inspired electronics: Toward soft and robust skin-like electronic nanosystems;Son;ACS Nano,2018

5. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics;Yu;Research (Wash D C),2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3