Direct ink writing of metal‐based electrocatalysts for Li–S batteries with efficient polysulfide conversion

Author:

Meng Ting12,Geng Zeyu12,Ma Fei12,Wang Xiaohan12,Zhang Haifeng12ORCID,Guan Cao12

Affiliation:

1. Xi'an Key Laboratory of Flexible Electronics, Institute of Flexible Electronics Northwestern Polytechnical University Xi'an China

2. Key laboratory of Flexible Electronics of Zhejiang Province Ningbo Institute of Northwestern Polytechnical University Ningbo China

Abstract

AbstractThanks to the significantly higher energy density compared with universal commercialized Li‐ion batteries, lithium–sulfur (Li–S) batteries are being investigated for use in prospective energy storage devices. However, the inadequate electrochemical kinetics of reactants and intermediates hinder commercial utilization. This limitation results in substantial capacity degradation and short battery lifespans, thereby impeding the battery's power export. Meanwhile, the capacity attenuation induced by the undesirable shuttle effect further hinders their industrialization. Considerable effort has been invested in developing electrocatalysts to fix lithium polysulfides and boost their conversion effectively. In the conventional process, the planar electrodes are prepared by slurry‐casting, which limits the electron and ion transfer paths, especially when the thickness of the electrodes is relatively large. Compared with traditional manufacturing methods, direct ink writing (DIW) technology offers unique advantages in both geometry shaping and rapid prototyping, and even complex three‐dimensional structures with high sulfur loading. Hence, this review presents a detailed description of the current developments in terms of Li–S batteries in DIW of metal‐based electrocatalysts. A thorough exploration of the behavior chemistry of electrocatalysis is provided, and the adhibition of metal‐based catalysts used for Li–S batteries is summarized from the aspect of material usage and performance enhancement. Then, the working principle of DIW technology and the requirements of used inks are presented, with a detailed focus on the latest advancements in DIW of metal‐based catalysts in Li–S battery systems. Their challenges and prospects are discussed to guide their future development.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3