3D Printing of Tungstate Anion Modulated 1T‐MoS2 Composite Cathodes for High‐Performance Lithium–Sulfur Batteries

Author:

Zhang Junpu1,Xie Zeren1,Xi Wen1,Zhang Youfang2,Wang Rui1,Gong Yansheng1,He Beibei1,Wang Huanwen1,Jin Jun13ORCID

Affiliation:

1. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China

2. Hubei Key Laboratory of Polymer Materials Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China

3. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China

Abstract

AbstractLithium–sulfur (Li–S) batteries can offer high capacity and energy‐density, but face challenges like low conductivity, lithium polysulfides (LiPSs) shuttling, and limited reaction kinetics. In this study, the electronic configuration of Mo 4d orbital in MoS2 is modulated through a one‐step method involving tungstate anion (WO42−) modulation to form a stable 1T‐MoS2/carbon composite (1T‐W‐MoS2/C). When WO42− is introduced, it causes a transfer of electrons to Mo in 2H‐MoS2, resulting in the generation of a stable 1T phase. In the composite, 1T‐MoS2 nanosheets exhibit remarkable electronic conductivity, hydrophilicity, and catalytic activity, facilitating the LiPSs adsorption and Li+ transport. Meanwhile, the WO42− modulation can create abundant adsorption/catalytic sites with defects on the basal surface and edges of MoS2, facilitating the efficient catalysis of LiPSs conversion. Furthermore, the 3D‐printed electrodes without utilization of binders and current collectors can ensure high mass loading and promote ion diffusion and electrolyte penetration. Theoretical and experimental results confirm that 1T‐W‐MoS2/C can catalyze LiPSs conversion, suppress LiPSs shuttling, and enhance sulfur reaction kinetics. Therefore, the 3D‐printed 1T‐W‐MoS2/C/S cathode exhibits a high initial capacity and excellent rate capability, achieving an areal capacity of 7.37 mAh cm−2 with a sulfur loading of 8.89 mg cm−2.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3