Fence‐Type Molecular Electrocatalysts for High‐Performance Lithium‐Sulfur Batteries

Author:

Wang Zhihua1,Zhu He1ORCID,Jiang Jun2,Dong Min1,Meng Fancang1,Ke Junru1,Ji Hua3,Xu Li1,Li Gaoran1,Fu Yongsheng2,Liu Qi4,Xue Zhenjun5,Ji Qingmin1ORCID,Zhu Junwu2,Lan Si1ORCID

Affiliation:

1. Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering Nanjing University of Science and Technology 210094 Nanjing China

2. Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education Nanjing University of Science and Technology 210094 Nanjing China

3. Material Engineering Department Suzhou Nuclear Power Research Institute 215004 Suzhou China

4. Department of Physics City University of Hong Kong 999077 Kowloon Hong Kong China

5. School of Chemistry and Chemical Engineering Nanjing University 210008 Nanjing China

Abstract

AbstractImproving the slow redox kinetics of sulfur species and shuttling issues of soluble intermediates induced from the multiphase sulfur redox reactions are crucial factors for developing the next‐generation high‐energy‐density lithium‐sulfur (Li−S) batteries. In this study, we successfully constructed a novel molecular electrocatalyst through in situ polymerization of bis(3,4‐dibromobenzene)‐18‐crown‐6 (BD18C6) with polysulfide anions on the cathode interface. The crown ether (CE)‐based polymer acts as a spatial “fence” to precisely control the unique redox characteristics of sulfur species, which could confine sulfur substance within its interior and interact with lithium polysulfides (LiPSs) to optimize the reaction barrier of sulfur species. The “fence” structure and the double‐sided Li+ penetrability of the CE molecule may also prevent the CE catalytic sites from being covered by sulfur during cycling. This new fence‐type electrocatalyst mitigates the “shuttle effect”, enhances the redox activity of sulfur species, and promotes the formation of three‐dimensional stacked lithium sulfide (Li2S) simultaneously. It thus enables lithium‐sulfur batteries to exhibit superior rate performance and cycle stability, which may also inspire development facing analogous multiphase electrochemical energy‐efficient conversion process.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3