Affiliation:
1. Department of Earth Sciences University College London London UK
2. School of Geosciences University of Aberdeen Aberdeen UK
Abstract
AbstractWe attempt to formalise the relationship between the poroelasticity theory and the effective medium theory of micromechanics. The assumptions of these two approaches vary, but both can be linked by considering the undrained response of a material; and that is the main focus of the paper. To analyse the linkage between poroelasticity and micromechanics, we do not limit ourselves to the original theory of Biot. Instead, we consider a multi‐porous extension of anisotropic poroelasticity, where pore fluid pressure may vary within the bulk medium of interest. As a consequence, any inhomogeneities in the material are not necessarily interconnected; instead, they may form isolated pore sets that are described by different poroelastic parameters and fluid pressures. We attempt to incorporate the effective methods inside Biot‐like theory and investigate the poroelastic response of various microstructures. We show the cases where such implementation is valid and the others that appear to be questionable. During micromechanical analysis, we derive a particular case of cylindrical transverse isotropy—commonly assumed in conventional laboratory triaxial tests—where the symmetry is induced by sets of aligned cracks.
Funder
Natural Environment Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients;International Journal for Numerical and Analytical Methods in Geomechanics;2024-03-18
2. Multi‐porous extension of anisotropic poroelasticity: Linkage with micromechanics;International Journal for Numerical and Analytical Methods in Geomechanics;2024-03-18