Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients

Author:

Adamus Filip P.1ORCID,Healy David2,Meredith Philip G.1,Mitchell Thomas M.1,Stanton‐Yonge Ashley1

Affiliation:

1. Department of Earth Sciences University College London London UK

2. School of Geosciences University of Aberdeen Aberdeen UK

Abstract

AbstractWe propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.

Funder

Natural Environment Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients;International Journal for Numerical and Analytical Methods in Geomechanics;2024-03-18

2. Multi‐porous extension of anisotropic poroelasticity: Linkage with micromechanics;International Journal for Numerical and Analytical Methods in Geomechanics;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3