Affiliation:
1. Fraunhofer Institute for Solar Energy Systems ISE Freiburg Germany
2. Department of Sustainable Systems Engineering (INATECH) University of Freiburg Freiburg Germany
3. Fraunhofer Center for Silicon Photovoltaics CSP Otto‐Eißfeldt‐Straße 12 Halle Germany
4. Cluster of Excellence livMatS@FIT‐Freiburg Center for Interactive Materials and Bioinspired Technologies University Freiburg Germany
Abstract
AbstractCapitalizing on the existing silicon industry, fully textured perovskite‐silicon tandem solar cells have a great potential to penetrate the electricity market. While the use of textured silicon with large pyramid size (> 1 μm) enhances the power conversion efficiency (PCE), it also presents process complications. To achieve high performance, meticulous control of deposition parameters on textured silicon is required. This study provides a guideline for the use of the hybrid evaporation/spin‐coating route to form high‐quality perovskite absorbers. Using various characterization techniques, we highlight intrinsic differences between perovskite growth on flat versus textured substrates. Furthermore, we provide pathways to ensure a high perovskite phase purity, reveal mitigation strategies to avoid the formation of undesired dendritic perovskite structures, give guidelines to ensure photostability, and discuss the “misleading” effect of residual PbI2 on the perovskite photoluminescence response. A good understanding of the perovskite growth on textured silicon enables the fabrication of a tandem device with a PCE > 26% (without employing additives or surface treatments) and a good operational stability. The comprehensive guidelines in this study provide a better understanding of perovskite formation on textured silicon and can be transferred when upscaling the hybrid route perovskite deposition.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献