Cumulative Effects in 100 kHz Repetition‐Rate Laser‐Induced Plasma Filaments in Air

Author:

Wang Tie-Jun12,Ebrahim Mehdi H.3,Afxenti Ivi3,Adamou Dionysis3,Dada Adetunmise C.34,Li Ruxin12,Leng Yuxin12,Diels Jean-Claude5,Faccio Daniele4,Couairon Arnaud6,Milián Carles7,Clerici Matteo3ORCID

Affiliation:

1. State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics and CAS Centre for Excellence in Ultra-intense Laser Science Chinese Academy of Sciences Shanghai 201800 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. James Watt School of Engineering University of Glasgow G12 8QQ Glasgow UK

4. School of Physics and Astronomy University of Glasgow G12 8QQ Glasgow UK

5. School of Optical Science and Engineering and Department of Physics and Astronomy University of New Mexico Albuquerque New Mexico 87106 USA

6. Centre de Physique Théorique CNRS École Polytechnique Institut Polytechnique de Paris F-91128 Palaiseau France

7. Institut Universitari de Matemàtica Pura i Aplicada Universitat Politècnica de València 46022 València Spain

Abstract

Cumulative effects are crucial for applications of laser filaments, such as for the remote transfer of energy and the control of electric discharges. Up to now, studies of cumulative effects in the air of high‐repetition‐rate pulse trains have been performed at lower rates than 10 kHz. Herein, the nonlinear effects associated with short plasma filaments produced by pulses of moderate energy (0.4 mJ per pulse) and repetition rates up to 100 kHz are experimentally characterized. With increasing repetition rate, a decrease in absorption, fluorescence emission, and breakdown voltage and concurrently an increase in peak intensity and third‐harmonic‐generation efficiency are observed. Hydrodynamic simulations of the heated gas show that the observed decreases are directly related to a quasi‐stationary state of reduced gas density in the filament. However, further investigations are required to fully understand the physics underpinning the observed sharp reduction of the breakdown voltage at 100 kHz repetition rates. The results may prove relevant for energy and information delivery applications by laser‐induced air waveguide or electric discharge and lightning control.

Funder

NSAF Joint Fund

Engineering and Physical Sciences Research Council

Royal Society

National Aeronautics and Space Administration

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3