Pulse repetition-rate effect on the critical power for self-focusing of femtosecond laser in air

Author:

Xu Ying1,Yang Chaopeng1ORCID,Li XianWang12,Liu Yaoxiang1ORCID,Wei Yingxia1ORCID,Wang Tie-jun1ORCID,Leng Yuxin1ORCID

Affiliation:

1. University of Chinese Academy of Sciences

2. Guizhou University

Abstract

The femtosecond laser filamentation is of significant interest due to its remarkable characteristics, and determining the critical power of self-focusing is essential for the process of filamentation. In this work, the critical power for self-focusing of intense femtosecond laser pulses at different repetition rates is experimentally measured according to the focus-shift method. A bimodal fitting method is proposed to more accurately determine the self-focusing critical power. It is found that the self-focusing critical power decreases as the laser repetition rate increases. A numerical simulation of the filamentation process based on the modified nonlinear Schrödinger equation effectively explains the experimental results obtained. This work provides valuable insights for the generation and application of high repetition rate femtosecond laser filamentation.

Funder

Shanghai Science and Technology Program

NSAF Joint Fund

International Partnership Program of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3