Highly Reproducible Epitaxial Growth of Wafer‐Scale Single‐Crystal Monolayer MoS2 on Sapphire

Author:

Yang Pengfei12,Liu Fachen3,Li Xuan24,Hu Jingyi12,Zhou Fan12,Zhu Lijie1,Chen Qing24,Gao Peng3,Zhang Yanfeng12ORCID

Affiliation:

1. School of Materials Science and Engineering Peking University Beijing 100871 P. R. China

2. Center for Nanochemistry Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China

3. Electron Microscopy Laboratory, and International Center for Quantum Materials School of Physics Peking University Beijing 100871 P. R. China

4. Key Laboratory for the Physics and Chemistry of Nanodevices School of Electronics Peking University Beijing 100871 P. R. China

Abstract

Abstract2D semiconducting transition‐metal dichalcogenides (TMDs) have attracted considerable attention as channel materials for next‐generation transistors. To meet the industry needs, large‐scale production of single‐crystal monolayer TMDs in highly reproducible and energy‐efficient manner is critically significant. Herein, it is reported that the high‐reproducible, high‐efficient epitaxial growth of wafer‐scale monolayer MoS2 single crystals on the industry‐compatible sapphire substrates, by virtue of a deliberately designed “face‐to‐face” metal‐foil‐based precursor supply route, carbon‐cloth‐filter based precursor concentration decay strategy, and the precise optimization of the chalcogenides and metal precursor ratio (i.e., S/Mo ratio). This unique growth design can concurrently guarantee the uniform release, short‐distance transport, and moderate deposition of metal precursor on a wafer‐scale substrate, affording high‐efficient and high‐reproducible growth of wafer‐scale single crystals (over two inches, six times faster than usual). Moreover, the S/Mo precursor ratio is found as a key factor for the epitaxial growth of MoS2 single crystals with rather high crystal quality, as convinced by the relatively high electronic performances of related devices. This work demonstrates a reliable route for the batch production of wafer‐scale single‐crystal 2D materials, thus propelling their practical applications in highly integrated high‐performance nanoelectronics and optoelectronics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3