Low-dimensional van der Waals materials for linear-polarization-sensitive photodetection: materials, polarizing strategies and applications

Author:

Ma Yuhang,Yi Huaxin,Liang Huanrong,Wang Wan,Zheng Zhaoqiang,Yao JiandongORCID,Yang Guowei

Abstract

Abstract Detecting light from a wealth of physical degrees of freedom (e.g. wavelength, intensity, polarization state, phase, etc) enables the acquirement of more comprehensive information. In the past two decades, low-dimensional van der Waals materials (vdWMs) have established themselves as transformative building blocks toward lensless polarization optoelectronics, which is highly beneficial for optoelectronic system miniaturization. This review provides a comprehensive overview on the recent development of low-dimensional vdWM polarized photodetectors. To begin with, the exploitation of pristine 1D/2D vdWMs with immanent in-plane anisotropy and related heterostructures for filterless polarization-sensitive photodetectors is introduced. Then, we have systematically epitomized the various strategies to induce polarization photosensitivity and enhance the degree of anisotropy for low-dimensional vdWM photodetectors, including quantum tailoring, construction of core–shell structures, rolling engineering, ferroelectric regulation, strain engineering, etc, with emphasis on the fundamental physical principles. Following that, the ingenious optoelectronic applications based on the low-dimensional vdWM polarized photodetectors, including multiplexing optical communications and enhanced-contrast imaging, have been presented. In the end, the current challenges along with the future prospects of this burgeoning research field have been underscored. On the whole, the review depicts a fascinating landscape for the next-generation high-integration multifunctional optoelectronic systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Projects in Guangzhou

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3