Growth of Wafer‐Scale Single‐Crystal 2D Semiconducting Transition Metal Dichalcogenide Monolayers

Author:

Singh Jitendra12,Astarini Nadiya Ayu1,Tsai Meng‐Lin1ORCID,Venkatesan Manikandan3,Kuo Chi‐Ching3,Yang Chan‐Shan4,Yen Hung‐Wei5

Affiliation:

1. Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei City 106335 Taiwan

2. Department of Physics Udit Narayan Post Graduate College Padrauna Kushinagar Uttar Pradesh 274304 India

3. Department of Molecular Science and Engineering Institute of Organic and Polymeric Materials National Taipei University of Technology Taipei City 106344 Taiwan

4. Institute and Undergraduate Program of Electro‐Optical Engineering National Taiwan Normal University Taipei City 11677 Taiwan

5. Department of Materials Science and Engineering National Taiwan University Taipei City 106319 Taiwan

Abstract

AbstractDue to extraordinary electronic and optoelectronic properties, large‐scale single‐crystal two‐dimensional (2D) semiconducting transition metal dichalcogenide (TMD) monolayers have gained significant interest in the development of profit‐making cutting‐edge nano and atomic‐scale devices. To explore the remarkable properties of single‐crystal 2D monolayers, many strategies are proposed to achieve ultra‐thin functional devices. Despite substantial attempts, the controllable growth of high‐quality single‐crystal 2D monolayer still needs to be improved. The quality of the 2D monolayer strongly depends on the underlying substrates primarily responsible for the formation of grain boundaries during the growth process. To restrain the grain boundaries, the epitaxial growth process plays a crucial role and becomes ideal if an appropriate single crystal substrate is selected. Therefore, this perspective focuses on the latest advances in the growth of large‐scale single‐crystal 2D TMD monolayers in the light of enhancing their industrial applicability. In the end, recent progress and challenges of 2D TMD materials for various potential applications are highlighted.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3