Affiliation:
1. School of Chemistry and Physics Faculty of Science Queensland University of Technology Brisbane QLD 4001 Australia
2. Centre for Materials Science Queensland University of Technology Brisbane QLD 4000 Australia
3. Greatcell Australia Bomen NSW 2650 Australia
Abstract
AbstractThe facile synthesis and beneficial properties of tin oxide have driven the development of efficient planar perovskite solar cells (PSCs). To increase the PSC performance, alkali salts are used to treat the SnO2 surface to minimize the defect states. However, the underlying mechanism of alkali cations' role in the PSCs needs further exploration. Herein the effect of alkali fluoride salts (KF, RbF, and CsF) on the properties of SnO2 and PSC performance is investigated. The results show different alkali have significant roles depending on their nature. Larger cations Cs+ preferably locate at the SnO2 film surface to passivate surface defects and enhance conductivity, while smaller cations like Rb+ or K+ cations tend to diffuse into the perovskite layer to reduce trap density of the material. The former effect leads to enhanced fill factor while the latter effect increases the open circuit voltage of the device. It is then demonstrated that a dual cation post‐treatment of the SnO2 layer with RbF and CsF achieves PSC with a significantly higher power conversion efficiency (PCE) of 21.66% compared to pristine PSC with a PCE of 19.71%. This highlights the significance of defect engineering of SnO2 using selective multiple alkali treatment to improve PSC performance.
Funder
Australian Research Council
Subject
General Materials Science,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献