Unraveling the Mechanism of Alkali Metal Fluoride Post‐Treatment of SnO2 for Efficient Planar Perovskite Solar Cells

Author:

Hoang Minh Tam12ORCID,Yang Yang12,Chiu Wei Hsun12,Yu Yongyue12,Pham Ngoc Duy3,Moonie Paul3,Koplick Andrew3,Tulloch Gavin3,Martens Wayde12,Wang Hongxia12ORCID

Affiliation:

1. School of Chemistry and Physics Faculty of Science Queensland University of Technology Brisbane QLD 4001 Australia

2. Centre for Materials Science Queensland University of Technology Brisbane QLD 4000 Australia

3. Greatcell Australia Bomen NSW 2650 Australia

Abstract

AbstractThe facile synthesis and beneficial properties of tin oxide have driven the development of efficient planar perovskite solar cells (PSCs). To increase the PSC performance, alkali salts are used to treat the SnO2 surface to minimize the defect states. However, the underlying mechanism of alkali cations' role in the PSCs needs further exploration. Herein the effect of alkali fluoride salts (KF, RbF, and CsF) on the properties of SnO2 and PSC performance is investigated. The results show different alkali have significant roles depending on their nature. Larger cations Cs+ preferably locate at the SnO2 film surface to passivate surface defects and enhance conductivity, while smaller cations like Rb+ or K+ cations tend to diffuse into the perovskite layer to reduce trap density of the material. The former effect leads to enhanced fill factor while the latter effect increases the open circuit voltage of the device. It is then demonstrated that a dual cation post‐treatment of the SnO2 layer with RbF and CsF achieves PSC with a significantly higher power conversion efficiency (PCE) of 21.66% compared to pristine PSC with a PCE of 19.71%. This highlights the significance of defect engineering of SnO2 using selective multiple alkali treatment to improve PSC performance.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3