Abstract
AbstractThe p-type characteristic of solution-processed metal halide perovskite transistors means that they could be used in combination with their n-type counterparts, such as indium–gallium–zinc-oxide transistors, to create complementary metal–oxide–semiconductor-like circuits. However, the performance and stability of perovskite-based transistors do not yet match their n-type counterparts, which limit their broader application. Here we report high-performance p-channel perovskite thin-film transistors based on inorganic caesium tin triiodide semiconducting layers that have moderate hole concentrations and high Hall mobilities. The perovskite channels are formed by engineering the film composition and crystallization process using a tin-fluoride-modified caesium-iodide-rich precursor with lead substitution. The optimized transistors exhibit field-effect hole mobilities of over 50 cm2 V−1 s−1 and on/off current ratios exceeding 108, as well as high operational stability and reproducibility.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
175 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献