Design Strategies toward High‐Performance Zn Metal Anode

Author:

Nie Wei1,Cheng Hongwei1,Sun Qiangchao1,Liang Shuquan2,Lu Xionggang1,Lu Bingan3,Zhou Jiang2ORCID

Affiliation:

1. State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering Shanghai University Shanghai 200444 China

2. School of Materials Science and Engineering Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials Central South University Changsha 410083 China

3. School of Physics and Electronics Hunan University Changsha 410082 China

Abstract

AbstractRechargeable aqueous Zn‐ion batteries (AZIBs) are one of the most promising alternatives for traditional energy‐storage devices because of their low cost, abundant resources, environmental friendliness, and inherent safety. However, several detrimental issues with Zn metal anodes including Zn dendrite formation, hydrogen evolution, corrosion and passivation, should be considered when designing advanced AZIBs. Moreover, these thorny issues are not independent but mutually reinforcing, covering many technical and processing parameters. Therefore, it is necessary to comprehensively summarize the issues facing Zn anodes and the corresponding strategies to develop roadmaps for the development of high‐performance Zn anodes. Herein, the failure mechanisms of Zn anodes and their corresponding impacts are outlined. Recent progress on improving the stability of Zn anode is summarized, including structurally designed Zn anodes, Zn alloy anodes, surface modification, electrolyte optimization, and separator design. Finally, this review provides brilliant and insightful perspectives for stable Zn metal anodes and promotes the large‐scale application of AZIBs in power grid systems.

Funder

National Natural Science Foundation of China

Shanghai University

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3