Improved Mn4+/Mn2+ Contribution in High‐Voltage Zn–MnO2 Batteries Enabled by an Al3+‐Ion Electrolyte

Author:

Chang Xingqi12ORCID,Chacón‐Borrero Jesús1,Shang Jian3,Xiao Ke1,Montaña‐Mora Guillem1,Mejia‐Centeno Karol V.12,Lu Xuan1,Yu Ao1,Yu Jing14,Zhou Xiaolong5ORCID,Tunmee Sarayut6,Kidkhunthod Pinit6,Cui Changcai7ORCID,Li Junshan8,Tang Yongbing5ORCID,Martínez‐Alanis Paulina R.1,Arbiol Jordi49,Cabot Andreu19

Affiliation:

1. Catalonia Institute for Energy Research – IREC Sant Adrià de Besòs Barcelona 08930 Spain

2. Facultat de Química Universitat de Barcelona Carrer de Martí i Franquès Barcelona 08028 Spain

3. Low‐Dimensional Energy Materials Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

4. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus UAB Bellaterra Barcelona 08193 Spain

5. Advanced Energy Storage Technology Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

6. Synchrotron Light Research Institute (Public Organization) 111 University Avenue Muang District Nakhon Ratchasima 30000 Thailand

7. College of Metrology Measurement and Instrument China Jiliang University Hangzhou 310018 China

8. Institute for Advanced Study Chengdu University Chengdu 610106 China

9. ICREA Pg. Lluis Companys Catalonia 08010 Barcelona Spain

Abstract

AbstractRechargeable aqueous Zn–MnO2 batteries are attracting attention as a cost‐effective and safe energy storage solution, but their commercialization faces challenges due to limited stability, output voltage, and energy density. Herein, a hybrid‐ion Zn–MnO2 system with enhanced Mn4+/Mn2+ electrochemical contribution is introduced using an Al3+‐based electrolyte. Compared with conventional Zn2+ electrolytes, the hybrid Al3+/Zn2+ cell offers higher output voltage of 1.75 V, capacities up to 469 mAh g−1, and outstanding energy densities up to ≈730 Wh kg−1 at 0.3 A g−1. Besides, the Al3+‐enabled Zn–MnO2 battery shows 100% capacity and energy density retention after 10,000 cycles at 2 A g−1. Even at a high mass–loading of 6.2 mg cm−2, a capacity of ≈200 mAh g−1 is maintained for over 100 cycles. This outstanding performance is related to the contribution of different intercalation and reaction mechanisms, as proved by the combination of electrochemical analysis and ex‐situ x‐ray diffraction characterization of the cells at different discharge stages. Al3+ ions, as Lewis strong acid, contribute to capacity in two significant ways: through a highly reversible intercalation/de‐intercalation that substantially boosts capacitance at low current rates, and promoting the Mn4+/Mn2+ reaction aided by H+ that dominates the capacitance at higher current rates. Overall, this work demonstrates a practical Zn–MnO2 battery with a high potential for low‐cost stationary energy storage habilitated by multiple ion co‐intercalation.

Funder

National Natural Science Foundation of China

National Research Council of Thailand

Science and Technology Planning Project of Shenzen Municipality

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3