Affiliation:
1. School of Materials Science and Engineering Southeast University Nanjing 211189 P. R. China
2. The State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University Nanjing 210096 P. R. China
3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
Abstract
AbstractIn the ever‐evolving landscape of complex electromagnetic (EM) environments, the demand for EM‐attenuating materials with multiple functionalities has grown. 1D metals, known for their high conductivity and ability to form networks that facilitate electron migration, stand out as promising candidates for EM attenuation. Presently, they find primary use in electromagnetic interference (EMI) shielding, but achieving a dual‐purpose application for EMI shielding and microwave absorption (MA) remains a challenge. In this context, Sn whiskers derived from the Ti2SnC MAX phase exhibit exceptional EMI shielding and MA properties. A minimum reflection loss of −44.82 dB is achievable at lower loading ratios, while higher loading ratios yield efficient EMI shielding effectiveness of 42.78 dB. These qualities result from a delicate balance between impedance matching and EM energy attenuation via adjustable conductive networks; and the enhanced interfacial polarization effect at the cylindrical heterogeneous interface between Sn and SnO2, visually characterized through off‐axis electron holography, also contributes to the impressive performance. Considering the compositional diversity of MAX phases and the scalable fabrication approach with environmental friendliness, this study provides a valuable pathway to multifunctional EM attenuating materials based on 1D metals.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献