Novel cable‐like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra‐wideband electromagnetic wave absorption

Author:

Hu Feiyue1,Ding Pei1,Wu Fushuo1,Zhang Peigen1ORCID,Zheng Wei1,Sun Wenwen1,Zhang Rui2,Cai Longzhu3,Fan Bingbing24ORCID,Sun ZhengMing1ORCID

Affiliation:

1. School of Materials Science and Engineering Southeast University Nanjing China

2. School of Materials Science and Engineering Zhengzhou University Zhengzhou China

3. The State Key Laboratory of Millimeter Waves, School of Information Science and Engineering Southeast University Nanjing China

4. Department of Engineering, Faculty of Environment, Science and Economy University of Exeter Exeter UK

Abstract

AbstractOne‐dimensional (1D) metals are well known for their exceptional conductivity and their ease of formation of interconnected networks that facilitate electron migration, making them promising candidates for electromagnetic (EM) attenuation. However, the impedance mismatch from high conductivity and their singular mode of energy loss hinder effective EM wave dissipation. Construction of cable structures not only optimizes impedance matching but also introduces a multitude of heterojunctions, increasing attenuation modes and potentially enhancing EM wave absorption (EMA) performance. Herein, we showcase the scalable synthesis of tin (Sn) whiskers from a Ti2SnC MAX phase precursor, followed by creation of a 1D tin@carbon (Sn@C) cable structure through polymerization of PDA on their surface and annealing in argon. The EMA capabilities of Sn@C significantly surpass those of uncoated Sn whiskers, with an effective absorption bandwidth reaching 7.4 GHz. Remarkably, its maximum radar cross section reduction value of 27.85 dB m2 indicates its exceptional stealth capabilities. The enhanced EMA performance is first attributed to optimized impedance matching, and furthermore, the Sn@C cable structures have rich SnO2/C and Sn/SnO2 heterointerfaces and the associated defects, which increase interfacial and defect‐induced polarization losses, as visually demonstrated by off‐axis electron holography. The development of the Sn@C cable structure represents a notable advancement in broadening the scope of materials with potential applications in stealth technology, and this study also contributes to the understanding of how heterojunctions can improve EMA performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3