Bidirectional, Multilayer MXene/Polyimide Aerogels for Ultra‐Broadband Microwave Absorption

Author:

Wang Xin1,Chen Xiaoming12ORCID,He Qingyuan1,Hui Yaozu1,Xu Chaofan1,Wang Baichuan1,Shan Feihu3,Zhang Jie4ORCID,Shao Jinyou1

Affiliation:

1. Micro‐ and Nanotechnology Research Center State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an 710049 China

2. XJTU‐POLIMI Joint School of Design and Innovation Xi'an Jiaotong University Xi'an 710049 China

3. Key Laboratory of High Energy Beam Processing Technology Beijing 100024 China

4. Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China

Abstract

AbstractTo obtain high‐performance electromagnetic microwave (EM) absorption materials with broad effective absorption bandwidth (EAB) and reduced thickness, designing structures has proved to be a promising way. Herein, ultra‐broadband multilayer bidirectional MXene/polyimide EM absorption aerogels containing multi‐structures on scales ranging from the micro‐ to the macroscale are produced with the aid of electric and temperature fields. On the microscale, under the action of electric force and temperature gradient, the ordered structures made of aligned Ti3C2Tx MXene nanosheets and the microscale layered aerogel walls enable the bidirectional aerogel to achieve a wide EAB of 8.58 GHz at a thickness of 2.1 mm. This is ascribed to the numerous aligned nanosheets and layered aerogel walls perpendicular to the incident EMs, facilitating the conversion of electromagnetic energy into electrical energy. Furthermore, on the macroscale, the multilayer bidirectional aerogel with non‐gradient structures effectively resolves the conflict between impedance matching and energy loss, resulting in an ultrawide EAB of 9.41 GHz at a thickness of 3 mm. This innovative design of electric‐field‐assisted multilayer bidirectional aerogels with multiscale structural coupling may provide feasible and effective pathways for the development of advanced EM absorption materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Key Research and Development Projects of Shaanxi Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3