Affiliation:
1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2. Yunnan Key Laboratory of Electromagnetic Materials and Devices, Kunming 650091, China
3. Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
Abstract
Nowadays, metamaterial absorbers still suffer from limited bandwidth, poor bandwidth scalability, and insufficient modulation depth. In order to solve this series of problems, we propose a metamaterial absorber based on graphene, VO2, gallium silver sulfide, and gold-silver alloy composites with dual-control modulation of temperature and electric field. Then we further investigate the optical switching performance of this absorber in this work. Our proposed metamaterial absorber has the advantages of broad absorption bandwidth, sufficient modulation depth, and good bandwidth scalability all together. Unlike the single inspired layer of previous designs, we innovatively adopted a multi-layer excitation structure, which can realize the purpose of absorption and bandwidth width regulation by a variety of means. Combined with the finite element analysis method, our proposed metamaterial absorber has excellent bandwidth scalability, which can be tuned from 2.7 THz bandwidth to 12.1 THz bandwidth by external electrothermal excitation. Meanwhile, the metamaterial absorber can also dynamically modulate the absorption from 3.8% to 99.8% at a wide incidence angle over the entire range of polarization angles, suggesting important potential applications in the field of optical switching in the terahertz range.
Funder
Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University
Natural Science Foundation of the Jiangsu Higher Education Institutions of China