Affiliation:
1. School of Mathematics and Statistics and Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan People's Republic of China
Abstract
AbstractThis article deals with the error analysis of a Galerkin‐mixed finite element methods for the advection–reaction–diffusion Brinkman flow in porous media. Numerical methods for incompressible miscible flow in porous media have been studied extensively in the last several decades. In practical applications, the lowest‐order Galerkin‐mixed method is the most popular one, where the linear Lagrange element is used for the concentration and the lowest‐order Raviart–Thomas element, the lowest‐order Nédélec edge element and piece‐wise constant discontinuous Galerkin element are used for the velocity, vorticity and pressure, respectively. The existing error estimate of this lowest‐order finite element method is only for all variables in spatial direction, which is not optimal for the concentration variable. This paper focuses on a new and optimal error estimate of a linearized backward Euler Galerkin‐mixed FEMs, where the second‐order accuracy for the concentration in spatial directions is established unconditionally. The key to our optimal error analysis is a new negative norm estimate for Nédélec edge element. Moreover, based on the computed numerical concentration, we propose a simple one‐step recovery technique to obtain a new numerical velocity, vorticity and pressure with second‐order accuracy. Numerical experiments are provided to confirm our theoretical analysis.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献