Optimal error estimates of a decoupled finite element scheme for the unsteady inductionless MHD equations

Author:

Zhang Xiaodi123ORCID,Dong Shitian4

Affiliation:

1. Henan Academy of Big Data Zhengzhou University Zhengzhou People's Republic of China

2. School of Mathematics and Statistics Zhengzhou University Zhengzhou People's Republic of China

3. Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics Hunan Normal University Changsha Hunan People's Republic of China

4. College of Mathematics and System Sciences Xinjiang University Urumqi People's Republic of China

Abstract

AbstractThis article focuses on a new and optimal error analysis of a decoupled finite element scheme for the inductionless magnetohydrodynamic (MHD) equations. The method uses the classical inf‐sup stable Mini/Taylor‐Hood (Mini/TH) finite element pairs to appropriate the velocity and pressure, and Raviart–Thomas (RT) face element to discretize the current density spatially, and the semi‐implicit Euler scheme with an additional stabilized term and some delicate implicit–explicit handling for the coupling terms temporally. The method enjoys some impressive features that it is linear, decoupled, unconditional energy stable and charge‐conservative. Due to the errors from the explicit handing of the coupling terms and the existence of the artificial stabilized term, and the contamination of the lower‐order RT face discretization in the error analysis, the existing theoretical results are not unconditional and optimal. By utilizing the anti‐symmetric structure of the coupling terms and the existence of the extra dissipative term, and the negative‐norm estimate for the mixed Poisson projection, we establish the unconditional and optimal error estimates for all the variables. Numerical tests are presented to illustrate our theoretical findings.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Reference36 articles.

1. On the exploration of innovative concepts for fusion chamber technology

2. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

3. Cambridge texts in applied mathematics;Davidson P. A.,2001

4. A time‐accurate, adaptive discretization for fluid flow problems;DeCaria V.;Int. J. Numer. Anal. Model.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3