Explicitly determined sea ice emissivity and emission temperature over the Arctic for surface‐sensitive microwave channels

Author:

Kang Eui‐Jong1,Sohn Byung‐Ju12ORCID,Tonboe Rasmus Tage3,Noh Young‐Chan4,Kwon In‐Hyuk5,Kim Sang‐Woo1,Maturilli Marion6,Kim Hyun‐Cheol4ORCID,Liu Chao2

Affiliation:

1. School of Earth and Environmental Sciences Seoul National University Seoul South Korea

2. School of Atmospheric Physics Nanjing University of Information Science and Technology (NUIST) Nanjing China

3. National Space Institute, Danish Technical University Copenhagen Denmark

4. Korea Polar Research Institute Incheon South Korea

5. Korea Institute of Atmospheric Prediction Systems Seoul South Korea

6. Helmholtz Centre for Polar and Marine Research Alfred Wegener Institute Bremerhaven Germany

Abstract

AbstractData assimilation of satellite microwave measurements is one of the important keys to improving weather forecasting over the Arctic region. However, the use of surface‐sensitive microwave‐sounding channel measurements for data assimilation or retrieval has been limited, especially during winter, due to the poorly constrained sea ice emissivity. In this study, aiming at more use of those channel measurements in the data assimilation, we propose an explicit method for specifying the surface radiative boundary conditions (namely emissivity and emitting layer temperature of snow and ice). These were explicitly determined with a radiative transfer model for snow and ice and with snow/ice physical parameters (i.e. snow/ice depths and vertical distributions of temperature, density, salinity, and grain size) simulated from the thermodynamically driven snow/ice growth model. We conducted 1D‐Var experiments in order to examine whether this approach can help to use the surface‐sensitive microwave temperature channel measurements over the Arctic sea ice region for data assimilation. Results show that (1) the surface‐sensitive microwave channels can be used in the 1D‐Var retrieval, and (2) the specification of the radiative boundary condition at the surface using the snow/sea ice emission model can significantly improve the atmospheric temperature retrieval, especially in the lower troposphere (500 hPa to surface). The successful retrieval suggests that useful information can be extracted from surface‐sensitive microwave‐sounding channel radiances over sea ice surfaces through the explicit determination of snow/ice emissivity and emitting layer temperature.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3