Simultaneous Inference of Sea Ice State and Surface Emissivity Model Using Machine Learning and Data Assimilation

Author:

Geer Alan J.1ORCID

Affiliation:

1. European Centre for Medium‐Range Weather Forecasts Reading UK

Abstract

AbstractSatellite microwave radiance observations are strongly sensitive to sea ice, but physical descriptions of the radiative transfer of sea ice and snow are incomplete. Further, the radiative transfer is controlled by poorly‐known microstructural properties that vary strongly in time and space. A consequence is that surface‐sensitive microwave observations are not assimilated over sea ice areas, and sea ice retrievals use heuristic rather than physical methods. An empirical model for sea ice radiative transfer would be helpful but it cannot be trained using standard machine learning techniques because the inputs are mostly unknown. The solution is to simultaneously train the empirical model and a set of empirical inputs: an “empirical state” method, which draws on both generative machine learning and physical data assimilation methodology. A hybrid physical‐empirical network describes the known and unknown physics of sea ice and atmospheric radiative transfer. The network is then trained to fit a year of radiance observations from Advanced Microwave Scanning Radiometer 2, using the atmospheric profiles, skin temperature and ocean water emissivity taken from a weather forecasting system. This process estimates maps of the daily sea ice concentration while also learning an empirical model for the sea ice emissivity. The model learns to define its own empirical input space along with daily maps of these empirical inputs. These maps represent the otherwise unknown microstructural properties of the sea ice and snow that affect the radiative transfer. This “empirical state” approach could be used to solve many other problems of earth system data assimilation.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3